A sharp division estimate for ultradifferentiable germs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Bilinear Restriction Estimate for Paraboloids

X iv :m at h/ 02 10 08 4v 2 [ m at h. C A ] 1 3 D ec 2 00 2 Abstract. Recently Wolff [28] obtained a sharp L2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of “elliptic surfaces” such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon ...

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

Nekhoroshev – like Estimate for Non – Linearizable Analytic Germs

We study the Siegel–Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey–s, s > 0 category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey–s formal linearization. We use this fact to prove the effective stability, i.e. stability for fini...

متن کامل

A sharp bilinear cone restriction estimate

The purpose of this paper is to prove an essentially sharp L2 Fourier restriction estimate for light cones, of the type which is called bilinear in the recent literature. Fix d ≥ 3, denote variables in Rd by (x, xd) with x ∈ Rd−1, and let Γ = {x : xd = |x| and 1 ≤ xd ≤ 2}. Let Γ1 and Γ2 be disjoint conical subsets, i.e. Γi = {x ∈ Γ : x xd ∈ Ωi} where Ωi are disjoint closed subsets of the sphere...

متن کامل

A Sharp Stability Estimate in Tensor Tomography

where γ runs over the set of all geodesics with endpoints on ∂M . All potential fields dv given by (dv)ij = 1 2 (∇ivj +∇jvi) with v = 0 on ∂M belong to the kernel of I. The ray transform I is called s-injective if this is the only obstruction to injectivity, i.e., if If = 0 implies that f is potential. S-injectivity can only hold under certain assumptions on (M, g). A natural conjecture is that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2002

ISSN: 0030-8730

DOI: 10.2140/pjm.2002.205.237